Thin Film Photovoltaics

Thin Film Photovoltaics

Characteristics of thin film photovoltaics

Thin film photovoltaic modules produce power at low cost per watt. They are ideal for large scale solar farms, as well as Building Integrated Photovoltaic applications (BIPV). They benefit from generating consistent power, not only at elevated temperatures, but also on cloudy, overcast days and at low sun angles.


For BIPV applications, thin film photovoltaics can offer excellent aesthetics. Thin film photovoltaic modules also benefit from a relatively small drop in power output under partial shadowing when compared with crystalline silicon photovoltaics. This gives thin film photovoltaic modules greater design flexibility when integrated into the building envelope.

Thin film photovoltaics consist of a stack of extremely thin photosensitive layers sandwiched between a top Transparent Conductive Oxide (TCO) coating and a back contact. The photovoltaic layers are laminated between a TCO glass such as NSG TEC™, and a low cost backing material, such as standard or thermally strengthened Pilkington Optifloat™ Clear glass.

Thin Film photovoltaic technologies

NSG TEC™ can be used with a number of thin film photovoltaic technologies, including amorphous silicon (a-Si), tandem (a-Si/μ-Si) – a combination of amorphous and microcrystalline silicon, cadmium telluride (CdTe), copper indium (gallium) diselenide (CIS, CIGS) and dye-sensitised solar cells (DSSC).

For more information on our solar glass product range, please read our solar glass literature.

We value your privacy

We use cookies on this website for analytics, remarketing, social media (optional) and content (essential) purposes.

By clicking ‘Accept All’ you consent to the use of cookies for non-essential functions and the related processing of personal data. Alternatively you can reject non-essential cookies by clicking ‘Essential Only’. You can adjust your preferences at any time by visiting our Cookie Policy and access the settings on that page.

For more information please read our